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A number of issues related to the modelling, vibration and stability of anisotropic
pretwisted beams rotating at constant angular speed about the longitudinal body-axis "xed
in the inertial space are investigated. The analysis is carried out in the framework of a re"ned
theory of thin-walled anisotropic composite beams featuring bending}bending elastic
coupling, and encompassing a number of non-classical features such as transverse-shear,
anisotropy and pretwist. Special attention is paid to the e!ect of the spinning speed, pretwist
angle, axial compressive load and symmetry/non-symmetry of the beam cross-section on
natural frequencies and instability of the structural system. Numerical illustrations
highlighting their implication on vibration and stability are displayed and pertinent
conclusions are outlined.

( 2000 Academic Press
1. INTRODUCTION

Rotating structures having the axis of rotation parallel to their longitudinal axis (referred to
as the spinning axis), are frequently used in various areas of the current technology.

Such structures are found in gas turbines for higher-power aircraft engines, in helicopter
drive applications, in space structures such as satellite booms, as well as in the cutting tools
used in boring and milling operations (see, e.g., references [1}8]).

Due to the complexity of accelerations acting throughout the system, the analysis of
spinning structures di!ers from that of their non-rotating counterparts, in the sense that, in
addition to the accelerations arising from elastic structural deformations, the ones
associated with the Coriolis and centripetal e!ects have also to be accounted for. Another
complexity arises when the beam features an initial pretwist. In such a case, additional
couplings are induced which can a!ect the beam response to static and dynamic loads. As
a result, the response of pretwisted beams is likely to be more complex than that of beams
with zero pretwist.

The study contained in this paper is carried out in the framework of a thin-walled beam
structural model experiencing bending}bending elastic coupling and incorporating
a number of non-classical e!ects such as transverse shear, rotatory inertia, Coriolis
acceleration, anisotropy of the structure, and pretwist.
0022-460X/00/430513#21 $35.00/0 ( 2000 Academic Press
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The available body of literature reveals that in the absence of the initial twist, this problem
was approached in the framework of the solid beam model, (see, e.g., references [8}13]) and of
the cylindrical shell theory, (see, e.g., references [14}19]). Moreover, with few exceptions, the
analysis was done in the context of metallic structures. For an extensive list of publications
related to this topic, the reader is referred to reference [20], whereas a comprehensive survey
on the literature devoted to pre-twisted rods and solid beams, can be found in reference [21].

To the best of the authors' knowledge, the present study represents the "rst work
investigating the dynamics and stability of spinning structures modelled as pretwisted
anisotropic thin-walled beams.

2. CO-ORDINATE SYSTEMS AND BASIC ASSUMPTIONS

The case of straight pretwisted #exible beams of length ¸ spinning about their
longitudinal z-axis at a constant rate X is considered (see Figure 1(a)). Two sets of
Figure 1. (a) Pretwisted thin-walled beam of closed cross-section. Rotating and inertial co-ordinate systems.
(b) Thin-walled beam featuring CUS con"guration. (c) Pretwisted beam cross-section. (d) Cross-section of the
spinning beam.



Figure 1. Continued.
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co-ordinates, an inertial one OX>Z, and a rotating frame of reference Oxyz with the
common origin O, located at the geometric center (coinciding with the elastic center of the
beam and with its centroid), are considered (see Figure 1(b)). It is supposed that at t"0, the
axes of the two systems coincide while, in the undeformed con"guration, the body-"xed and
inertial co-ordinates Oz and OZ coincide at any time t. Associated with the co-ordinate
systems (x, y, z) and (X, >, Z), one de"nes the unit vectors (i, j, k) and (I, J, K) respectively. In
the light of the stipulated assumptions one can represent the spin rate vector X as
X"Xk (,XK) with X0 "0.

Besides the co-ordinates (x, y, z), we also de"ne the local co-ordinates (xp, yp, zp), where xp

and yp denote the principal axes of an arbitrary beam cross-section (see Figure 1(c)).
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These two co-ordinate systems are related by the following transformation relationships:

x (s, z)"xp (s) cos b!yp(s) sin b; y (s, z)"xp(s) sin b#yp(s) cosb; z(s)"zp, (1a, b)

where b (z)"b
0
z, with b

0
denoting the pretwist per unit beam length. From equations (1) it

becomes apparent that the systems (xp, yp) and (x, y) coincide at the beam root (z"0). It is
also appropriate to de"ne here the beam surface co-ordinate system (s, z, n) where s and
n are the circumferential and thickness co-ordinates respectively (see Figure 1(d)). The
pretwisted beam can be generated by translating a section parallel to itself and preserving
the center of mass along the z-axis and at the same time by rotating this section about the
z-axis by an angle b proportional to the displacement of the center of mass.

The structural model considered consists of a single-cell thin-walled beam of arbitrary
cross-sectional shape. Toward its modelling the following assumptions are adopted: (1) the
original cross-section of the beam is preserved, (2) transverse shear e!ects are incorporated,
(3) the constituent material of the structure features anisotropic properties, and, in this
context, a special layup inducing the #apwise-chordwise bending coupling is implemented,
and "nally (4) there is no unbalance, in the sense that the centroidal axis coincides with the
axis of rotation.

3. KINEMATICS

In the light of the previously mentioned assumptions, and in order to reduce the
three-dimensional (3-D) elasticity problem to an equivalent 1-D one, the components of the
displacement vector are represented as (see references [22, 23])

u (x, y, z; t)"u
0
(z; t)!y (s, z)/ (z; t)

&&&&&&&&
, v(x, y, z; t)"v

0
(z; t)#x (s, z)/ (z; t)

&&&&&&&&

, (2a}c)

w (x, y, z; t)"w
0
(z; t)#h

x
(z; t)Cy (s, z)!n

dx

dsD
#h

y
(z; t) Cx (s, z)#n

dy

dsD!/@(z, t)[Fu(s; z)#na(s, z)]
&&&&&&&&&&&&&&&&&&&

.

In these equations u
0
(z; t), v

0
(z; t), w

0
(z; t) denote the rigid-body translations along the x-, y-

and z-axis, while / (z; t) and h
x
(z; t), h

y
(z, t) denote the twist about the z-axis and rotations

about the x- and y-axis respectively. The expressions of h
x

and h
y
are

h
x
(z; t)"c

yz
(z; t)!v@

0
(z; t), h

y
(z; t)"c

xz
(z; t)!u@

0
(z; t). (3a, b)

In equations (2), Fu(s) and na(s) play the role of primary and secondary warping functions
respectively. For their de"nition see references [22, 23]. However, having in view that in this
analysis the bending}bending coupled motion is considered, only, the terms in equation (2)
underscored by an undulated line become immaterial.

It is readily seen that by virtue of equations (2) and (3), the statement of the cross-section
non-deformability (implying e

xx
"0; e

yy
"0 and c

xy
"0 and, consequently,

e
nn
"e

ss
"c

sn
"0), as well as the continuity requirement of w along the mid-line contour

(i.e., {(Lw/Ls) ds"0), are ful"lled. It is also seen that in the absence of transverse shear e!ects

h
x
(z; t)"!v@

0
(z; t), h

y
(z; t)"!u@

0
(z; t), (4a, b)

and in this case, equations (2a}c) are identical to the ones in reference [24]. In these
equations, and the forthcoming ones, the primes denote di!erentiation with respect to the
longitudinal z-co-ordinate. The position vector of a point M(x, y, z) belonging to the
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deformed structure is

R(x, y, z; t)"(x#u) i#(y#v)j#(z#w)k, (5)

where x, y and z are the Cartesian co-ordinates of the points of the continuum in its
undeformed state. Recalling that the spin rate was assumed to be constant, the velocity and
acceleration of point M are

R0 "[uR !X (y#v)]i#[vR#X (x#u)]j#wR k, (6a, b)
RG"[uK!2XvR!(x#u)X2]i#[vK#2XuR !(y#v)X2] j#wK k,

where the superposed dots denote time derivatives.

4. GOVERNING EQUATIONS

Toward the goal of deriving the equations of motion of spinning beams, and the
associated boundary conditions, Hamilton's variational principle is used. This variational
principle may be stated as (see, e.g., reference [25])

dJ"P
t
1

t
0
Cd;!dK!PXp

s
J i
dv

i
dX!Pq

oH
i
dv

i
dqDdt"0, (7)

where

;"

1

2 Pq
p
ij
e
ij
dq, K"

1

2 Pq
o (R0 )R0 ) dq (8a, b)

denote the strain energy functional and the kinetic energy respectively.
In these equations, t

0
and t

1
denote two arbitrary instants of time; dq (,dndsdz) denotes

the di!erential volume element; s
J i
(,p

8 ij
n
j
) denote the prescribed components of the stress

vector on a surface element of the undeformed body characterized by the outward normal
components n

i
; H

i
denote the components of the body forces; Xp denotes the external area of

the body over which the stresses are prescribed; o denotes the mass density; an undertilde
sign identi"es a prescribed quantity while d denotes the variation operator. In equations (7)
and (8) the Einstein summation convention applies to repeated indices, where Latin indices
range from 1 to 3. In the same equations, (v

1
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2
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3
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1
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3
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In the light of equations (2), (5), (6) and (8) and bearing in mind Hamilton's condition
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In order to induce the elastic coupling between #apwise-bending and chordwise-bending,
a special ply-angle distribution referred to as circumferentially uniform sti+ness (CUS)
con"guration achieved by skewing angle plies with respect to the beam axis according to
the law h(y)"h(!y), and h(x)"h(!x) is implemented. Angle h denotes the dominant
ply-angle orientation in the upper, bottom, and the lateral beam walls measured from the
positive s-axis towards the positive z-axis. In this case, based on equations (2) and (3) and
the equations expressing the 1-D stress-resultants and stress-couple measures (see reference
[22]), from the variational principle (equation (7)), the equations of motion and the
boundary conditions involving this type of coupling are obtained. Employment in these
equations of constitutive equations, of strain}displacement relationships, and having in
view the results in reference [26] related to the inclusion of a longitudinal compressive dead
force P, the following governing equations are obtained:
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and the boundary conditions at z"0, ¸:

du
0
: Q

x
"Q

I x
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0
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,
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0
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I y
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Herein Q
x
(z; t) and Q

y
(z; t) denote the shear forces in the x and y directions, while M

x
(z; t)

and M
y
(z; t) denote the moments about the x- and y-axis respectively. Their de"nitions can

be found in references [22, 23]. In terms of displacement quantities, the static version of
homogeneous boundary conditions becomes
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0
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The coe$cients a
ij
"a

ji
and b

i
appearing in these equations as well as in the forthcoming

ones denote sti!ness and reduced mass terms respectively. Their expressions in terms of
their cross-section principal axes (xp, yp) counterparts are provided in Appendix A.
Equations (10) and (12) reveal that in the context of the ply-angle con"guration considered
above the #apwise transverse shear is coupled with the chordwise-bending and the
chordwise transverse shear is coupled with the #apwise-bending. In addition to the Coriolis
acceleration (whose terms are associated with the gyroscopic e!ect and are underscored by
a dotted line), the sti!ness quantities a

45
and a

23
and the mass terms b

6
and b

13
which are

di!erent from zero only in the case of a pretwisted beam (see Appendix A) induce
a supplementary coupling between the bendings in #apping and lagging. However, from the
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expressions of a
45

, a
23

, b
6

and b
13

, it can readily seen that for a box-beam of a square
cross-section, these quantities are zero valued for any value of the pretwist b.

As a result, in such a case, the #apping}lagging coupling arises independently from the
pretwist e!ect, being a result of the considered ply-angle con"guration. Consequently, in
a buckling analysis of non-spinning pretwisted beams of a square cross-section, the buckling
response should be independent of the pretwist angle b.

5. THE CASE OF THIN-WALLED BEAMS FEATURING INFINITE TRANSVERSE
SHEAR STIFFNESS

Equations (10) and (12) have been obtained for the case of a shearable beam. Towards
determining the equations for the non-shearable beam counterpart, elimination of
a
45

(v@
0
#h

x
) and a

45
(u@

0
#h

y
) in equation (10) and the boundary conditions (12), followed by

consideration of h
x
P!v@

0
and h

y
P!u@

0
, results in the associated governing equations
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and the boundary conditions
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6
!b

13
)uK @

0

#(b
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0
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du@
0
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uA
0
#a
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0
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0
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dv@
0
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0
#a
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0
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Similar to the case of shearable beams, also in this case, the #apping}lagging coupling
arises via the Coriolis and the pretwist e!ects.

6. SOLUTION METHODOLOGY OF THE EIGENVALUE PROBLEM
OF GYROSCOPIC SYSTEMS

Toward the goal of solving the eigenvalue problem of the gyroscopic system as given by
equations (10)}(12) and equations (13) and (14) corresponding to shearable and
non-shearable beam structures, respectively, the following steps will be implemented. The
"rst step consists of the representation of displacement functions in the form

u
0
(z, t)"UT(z)q

u
(t), v

0
(z, t)"VT(z)q

v
(t),

h
x
(z, t)"XT(z)q

X
(t), h

y
(z, t)"YT(z)q

Y
(t), (15a}d)

where

U,[u
1
, u

2
,2, v

N
]T, V,[v

1
, v

2
,2, v

N
]T,

X,[X
1
, X

2
,2, X

N
]T, Y,[>

1
, >

2
,2,>

N
]T (15e}h)
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are the vectors of trial functions, while

q
u
,[qu

1
, qu

2
,2, qu

N
]T, q

v
,[qv

1
, qv

2
,2, qv

N
]T,

q
X
,[qX

1
, qX

2
,2, qX

N
]T, q

Y
,[qY

1
, qY

2
,2, qY

N
]T, (15i}l)

denote the vectors of generalized co-ordinates, while the superscript T denotes the transpose
operation. Replacing representations (15) in the variational integral (7), considered in
conjunction with equations (8a), (9) and (1), and carrying out the indicated variations and the
required integration, result in the equation governing the motion of the gyroscopic system

MqK (t)#Gq5 (t)#Kq(t)"0. (16a)

Herein M and K are the symmetric mass matrix and the sti!ness matrix, respectively, G is
the skew-symmetric gyroscopic matrix, while

q(,[qT
u
, qT

v
, qT

X
, qT

Y
]T ) (16b)

is the overall vector of generalized co-ordinates.
Using the method presented in reference [27], equation (16a) will be expressed in

state-space form. In this sense, upon de"ning the state vector X"[qT, q5 T]T and adjoining
the identity q5 "q5 , equation (16a) is converted to

X0 (t)"AX(t), (17)

where the 4N]4N state matrix A is given by

A"

0

} } } } } }

!M~1K

I

} } } } } }

!M~1G

(18)

while I is the unitary matrix. Upon expressing X(t) in equation (17) as

X (t)"Z exp(jt), (19)

where Z is a constant vector and j a constant-valued quantity, both generally complex,
a standard eigenvalue problem is obtained:

(Z!jI)X"0, (20)

that can be solved for the eigenvalues j
r
and eigenvectors X

r
.

As shown in reference [27], depending upon the positive de"niteness, positive
semi-de"niteness and negative de"niteness of the sti!ness matrix K which contains elements
associated with X2, the compressive load and the pretwist angle, the eigenvalues of equation
(20) can be respectively: (1) purely imaginary, which implies pure oscillatory motion, the
eigenvalues appearing as purely imaginary pairs j

r
"$iu

r
(r"1, 2,2, N), where u

r
are

the rotating (whirling) frequencies; (2) at least one eigenvalue can be zero (which implies
divergent motion); or (3) the eigenvalues can be complex conjugate with at least one of these
having a positive real part, which implies unstable motion, the instability being of the #utter
type. Although this type of instability is typical of non-conservative systems, this can occur
also in conservative gyroscopic systems.

7. COMPARISONS WITH AVAILABLE PREDICTIONS

At this point it should be remarked that the equations governing the coupled bending
vibrations of pretwisted thin-walled beam cantilevers are formally similar to the ones
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corresponding to a solid beam (see, e.g., references [9, 10]). The di!erence between these two
models reduces to the proper expression of cross-sectional sti!ness and mass term
quantities. For this reason, the use of dimensionless parameters in which these quantities
are absorbed will make it possible to obtain universal results valid for both solid and
thin-walled spinning beams. In order to validate both the solution methodology and the
structural model developed in this paper, comparisons with a number of results scattered
throughout the specialized literature and obtained for solid beams will be presented. One of
these results is related to the variation of natural frequency ratios as a function of the
spinning speed of an untwisted (b"0), and unshearable isotropic beam.

Figure 2 depicts the dependence of rotating frequency u6
i
(,u

i
/u

0
) as a function of the

spin rate X1 (,X/u
0
), for a beam characterized by the ratio of the principal #exural

sti!nesses I (,a
33

/a
22
"(b/c)2)"1 and 0)25 where u2

0
(,EJa

22
a
33

/oA¸4), A denoting
the cross-sectional beam area.

When (I"1), and XM "0 the #apping and lagging frequencies in each mode coincide
whereas, for I"0)25, the non-rotating bending frequencies in #apping and lagging do not
coincide. In the case of I"1, with the increase of XM , a bifurcation of natural frequencies is
experienced, resulting in the upper and lower frequency branches (see references [9, 11]).
This reverts to the conclusion that due to the e!ect of gyroscopic Coriolis forces, two
distinct frequency branches of the free bending vibration are produced. The spin rate at
which the lowest rotating natural frequency (i.e., the backward whirl frequency) becomes
zero-valued is referred to as the critical spinning speed, and corresponds to the divergence
instability.

In contrast to the case of a square beam cross-section implying I"1, when a single
critical spinning speed corresponding to each frequency mode number is obtained, in the
case of a non-square beam cross-section (for the present case I"0)25), there is a whole



TABLE 1

¹he ,rst three-mode eigenfrequencies uN
n
(,u

n
/u

0
), obtained via various methods, for selected

values of the pretwist angle

Frequency ratio (u
n
/u

0
)

Pretwist Rayleigh} Transforma- Bernoulli}
Mode angle Ritz tion method FEM Euler Timoshenko Timoshenko
no. (deg) method [28] [28] [29] FEM [10] FEM [10] present

30 1)00 1)00 1)00 1)00 1)00 1)00
1 60 1)01 1)01 1)01 1)01 1)02 1)01

90 1)02 1)03 1)02 1)03 1)03 1)03

30 5)55 5)56 5)56 5)56 5)57 5)56
2 60 4)41 4)43 4)42 4)42 4)43 4)42

90 3)53 3)55 3)54 3)55 3)57 3)54

30 16)12 16)08 16)06 16)06 16)06 16)19
3 60 15)02 14)99 14)98 14)99 15)02 14)98

90 13)58 13)55 13)53 13)53 13)59 13)50

TABLE 2

Frequency ratios for a straight uniform cantilever (a
22

/a
33
"64, ¸"35)56 cm)

Mode Ref. [32] Present
no. Ref. [31] (FEM) (EGM)

Standard Stodola Experimental

1 1)00 1)00 1)00 1)00 1)00
2 6)28 6)29 6)09 6)26 6)27
3 17)57 17)74 17)11 17)57 17)55
4 34)38 35)16 33)59 34)60 34)44
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domain of critical spinning speeds, bordered by (XM
cr
)
1

and (XM
cr
)
2
, for which the dynamic

system becomes unstable. Herein (XM
cr
)
1
and (XM

cr
)
2
, denote the lower and upper bounds of the

divergence instability domain (see Figure 2). The results displayed in Figure 2 coincide with
those in references [9, 11] obtained via the use of various numerical procedures.

A further validation of the solution methodology used in this paper concerns the case of
free vibration of a pretwisted non-rotating beam of rectangular cross-section characterized
by the cross-section ratio c/b"16, b"0)5 cm and ¸"100 cm.

The results displayed in Table 1 compare the normalized frequencies u6
n
(,u

n
/u

0
)

obtained via di!erent numerical procedures, where u
n

are the actual frequencies, and
u

0
"26)083 rad/s is the lowest frequency of the untwisted beam counterpart.
The considered numerical procedures involve the Rayleigh}Ritz and transformation

methods [28]; the "nite element method (FEM) for the Euler}Bernoulli and Timoshenko
beam models [29, 10], as well as the present method for shearable beams. The results
obtained for this case reveal that, consistent with the actual characteristics of the beam, the
variation of the various mode frequencies with the pretwist angle follows a similar trend to



TABLE 3

Comparison of the buckling coe.cients S (,P
cr
¸2/ap

33
) obtained via FEM and the present

method, for selected values of the pretwist angle b and cross-section aspect-ratio R. Shearable
beam model

R"1)0 R"0)75 R"0)5 R"0)25
b

(deg) Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10] Present

0 2)453 2)453 2)453 2)453 2)453 2)453 2)453 2)453
90 2)453 2)453 2)562 2)554 2)624 2)649 2)686 2)669

180 2)453 2)453 2)802 2)794 3)106 3)081 3)304 3)273
270 2)453 2)453 2)963 2)953 3)479 3)439 3)857 3)803
360 2)453 2)453 3)004 2)991 3)596 3)539 4)048 3)973
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that described in references [30, 31]. On the other hand, a comparison of the results
generated via di!erent numerical procedures reveals an excellent agreement.

In Table 2, the comparisons of the theoretical and experimental results obtained in
references [31, 32] for a uniform cantilever with the present ones, reveal again an excellent
agreement.

A "nal test case concerns the buckling of a pretwisted shearable beam of ¸"0)5 m and
c"2 m. The values of the buckling coe$cient S(,P

cr
¸2/ap

33
) for selected values of the

pretwist angle and cross-section ratios R, predicted via the FEM developed in reference
[10], are compared in Table 3 with the present ones, and an excellent agreement is revealed.

8. NUMERICAL SIMULATIONS AND DISCUSSION

A number of cases intended to highlight the e!ects played by the pretwist and
compressive load on the vibration and instability of spinning cantilevered thin-walled
beams will be presented.

The numerical simulations involve a box-beam of rectangular cross-section of "xed
dimensions indicated in Figure 1(b). The beam is supposed to be manufactured from
a graphite-epoxy material whose on-axis elastic properties are E

L
"30]106 psi

(20)68]1010 N/m2), E
T
"0)75]106 psi (5)17]109 N/m2), G

LT
"0)37]106 psi

(2)55]109 N/m2), G
TT

"0)37]106 psi (2)54]109 N/m2), k
TT

"k
LT

"0)25,
o"14)3]10~5 lb s2/in4 (1528)15 N s2/m4), where the subscripts ¸ and ¹ denote directions
parallel and transverse to the "bers, respectively.

Throughout the numerical illustrations, the case of a clamped}free beam was considered.
In Figure 3, in the absence of the compressive load, the dependence of u6

1
(,u

1
/u(

1
)

versus the normalized spin rate XM (,X/u(
1
) for a beam without pretwist, for selected values

of the beam cross-section parameter R (,b/c) is depicted. Herein, as in the remaining plots,
the ply-angle h was considered to be h"03. The normalizing fundamental frequency
u(

1
("164)73 rad/s) corresponds to a non-rotating beam of square cross-section, the

material being characterized by h"03. For the non-rotating beam, XM "0, and for the case
R"1, the #apping and lagging frequencies coincide.

However, as it appears from Figure 3, and previously revealed in Figure 2, for beams
characterized by RO1, the non-rotating frequencies in #apping and lagging do not
coincide.



Figure 3. Rotating frequency}spin rate interaction for a beam of selected values of R, h"03 and pretwist angle
h"03: **, u6

IF
; } } }, u6

1B
; j, R"0)25; d, R"0)5; m, R"0)75; r, R"1.
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The recorded results reveal again that, in contrast to the case of thin-walled beams of
square cross-sections, R"1, in which case a single critical divergence spin speed is
experienced, in the case of beams of rectangular cross-sections, RO1, there is a whole
domain of critical spinning speeds for which the systems becomes unstable by divergence.
Moreover, for the beam characterized by RO1, for R(1, the domains of spinning speed
instability are shifted towards lower spinning speeds.

In Figure 4, the variation of the divergence speed instability domain as a function of the
pretwist angle and for selected values of R has been depicted. For selected cross-section
ratios R, in this "gure the variation of the divergence speed instability domain spanned
between the lower and upper bands, (XM

cr
)
1

and (XM
cr
)
2
, respectively, versus the pretwist

angles, is depicted. From this plot it becomes apparent that for R"1 the spinning
divergence speed does not depend on the pretwist angle and, as a result, for this case the
critical speed domain reduces to a single critical spin speed. The results emerging from this
"gure also reveal that for R(1 the divergence speed instability domain decreases as the
pretwist angle increases. Similar conclusions have been obtained within the framework of
a solid beam model in reference [10], where the FEM was used to generate the results.

In Figure 5 the e!ect of the pretwist is involved, where the total angle of pretwist at the
beam tip is indicated. From this "gure it becomes apparent that for the beams characterized
by RO1, with increase of XM , the lower frequency branch (corresponding to the forward
whirl) decreases while the upper mode frequency branch (corresponding to the backward
whirl) increases. The spin speed at which the forward whirl frequency becomes zero
constitutes the divergence spin speed. Beyond this spin speed the system becomes stable
again and with the further increases of XM , for a certain value of XM "XM

flutter
, referred to as the

#utter spin speed, two eigenfrequencies coalesce. Beyond XM
flutter

the two eigenfrequencies
becomes complex conjugate. From Figure 5 it clearly appears that for R"1, the #utter spin
speed is theoretically in"nite and decreases with the decrease of the parameter R.



Figure 4. Variation of the critical spin speed in divergence as a function of the pretwist angle for selected values
of R and h"03. The divergence instability domain is extended between (X

cr
)
1

and (X
cr
)
2
: } } }, (X1

cr
)
1
;**, (X1

cr
)
2
.

j, R"0)25; d, R"0)5; m, R"0)75; r, R"1.

Figure 5. Rotating frequency}spin rate interaction for a beam with selected values of R; h"0 and pretwist angle
at the beam tip b"453. **, u6

IF
; } }}, u6

1B
; j, R"0)25; d, R"0)5; m, R"0)75; r, R"1.
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Figure 6 records the dependence of u6
1

versus XM for "xed pretwist angle and selected
R ratios. In addition to the previously mentioned "ndings, the results of Figure 5 and
6 reveal that in the case of a square cross-section beam, for any pretwist angle and spin
speed, the phenomenon of #utter instability does not occur.



Figure 6. Rotating frequency}spin rate interaction for selected values of beam parameter R, h"03 and the
pretwist angle b"1803. **, u6

IF
; } } }, u6

1B
; j, R"0)25; d, R"0)5; m, R"0)75; r, R"1.

Figure 7. Dependence of the two branches u6
i
(i"1, 2) of the fundamental frequency on the axial compressive

load PM for selected values of the pretwist angle b (deg). The considered box-beam is characterized by R"0)25,
h"03, X"0; **, u6

1
; } } }, u6

2
.
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Figure 8. The counterpart of Figure 7 for the ply-angle h"453; **, u6
1
; } } }, u6

2
.

Figure 9. Dependence of the two branches u6
i
(i"1, 2) of the fundamental frequency on the axial compressive

load PM for selected values of the pretwist angle b (deg). The box-beam is characterized by R"0)5, h"03;**, u6
1
;

}} }, u6
2
.
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Figure 7}11 depict the variation of the non-rotating lower and upper branches
(u6

i
(,u

i
/u(

1
(i"1, 2) of the fundamental frequency versus the normalized axial load,

PM (,P/PK
cr
) for selected pretwist, ply-angles and cross-section R parameters. Herein u(

1
and

PK
cr
(,P

cr
¸2/ap

33
) denote the normalizing fundamental frequency and the buckling load,



Figure 10. The counterpart of Figure 9 for the ply-angle h"453; **, u6
1
, } } }, u6

2
.

Figure 11. Dependence of the fundamental frequency on the compressive axial load for selected values of the
pretwist angle, b"03, 453, 903, 1353, 1803. Herein the box-beam is characterized by R"1, h"03, X"0.
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respectively, correspond to XM "0, h"0, R"1 and b"0, and have the values:
u(

1
"164)73 rad/s, PK

cr
"2)43, whereas ap

33
"2)134]108 lb in2.

From these plots it can be remarked that with the increase of the axial compressive load,
the frequencies are decreasing. The value of the axial (normalized) load for which the



Figure 12. The counterpart of Figure 11 for h"453, b(¸)"03, 903, 1803.
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frequency vanishes constitutes the critical (buckling) axial compressive load. With the
increase of the pretwist angle, for the same compressive load, whereas the eigenfrequencies
associated with the lower branch increases, those associated with the second one decrease.
As a result, a beam featuring larger pretwist angles can sustain larger compressive edge
loads before the occurence of buckling. For values the cross-section parameter
R approaching 1, it becomes apparent that the frequency}load interaction curves associated
with the lower and upper branches approach each other and for R"1 these merge
together. The results in these "gures also reveal that the cross-section parameter R and the
ply-angle h can play an important role towards enhancing the behavior of the structure by
increasing independently, each of these, the natural frequencies and the buckling load.

In contradistinction with the trend occurring in the case RO1, for R"1, the results
displayed in Figures 11 and 12 reveal that the pretwist angle does not play any role on
frequency}load interaction. On the other hand, the results of these plots outline once more
the bene"cial e!ect of the ply-angle on both eigenfrequency and buckling load.

Figure 13 depicts the lowest normalized buckling load versus the pretwist angle, for
selected values R of the cross-section beam. The results show an expected result, namely
that for R"1, the buckling load is not a!ected by the pretwist angle. However, for the case
RO1, the buckling load increases as the pretwist increases and the cross-section parameter
R decreases. These conclusions are similar to those in references [9, 10] obtained for a solid
beam via the assumed-mode approximation, and the FEM, respectively.

9. CONCLUSIONS

An analytical study devoted to the mathematical modelling of spinning thin-walled
beams featuring pretwist and experiencing bending}bending coupled motion has been
presented. The numerical illustrations have revealed that the pretwisted spinning
thin-walled beams can lose their stability by divergence and #utter. In addition to the



Figure 13. Variation of the lowest buckling load with the pretwist angle b (deg) for selected values of the
cross-section beam parameter R, (h"453, X"0). *d*, R"0)25; , *j*, R"0)5; *r*, R"0)75; *m*,
R"1.
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"ndings reported in references [33}36] revealing that #utter instability can occur in a loaded
spinning beam, here, the results show that this instability can occur in an unloaded, but
pretwisted beam, characterized by a cross-section parameter RO1.

A number of conclusions related to the implications of pretwist on frequency}load
interaction and on the buckling of thin-walled beams are also outlined. Although not
explored in this paper, the tailoring technique used in reference [20], enabling one to
enhance the frequency}load interaction and the dynamic behavior of spinning systems by
extending their domains of stability towards larger spinning speeds and/or larger
compressive loads, can also be applied to this case.
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APPENDIX A: STIFFNESS AND MASS TERMS

¹he expressions of sti+ness quantities a
ij
("a

ij
) and mass terms b

i
intervening in equations

(10) and (12)}(14) are

a
22
"m2ap

22
#n2ap

33
!2mnap

23
, a

23
"mn[ap

22
!ap

33
],

a
25
"m2ap

25
!n2ap

34
#mn[ap

24
!ap

35
], a

33
"m2ap

33
#n2ap

22
#2mnap

23
,

a
34
"m2ap

34
!n2ap

25
#mn[ap

24
!ap

35
], a

44
"m2ap

44
#n2ap

55
#2mnap

45
,

a
45
"mn[ap

44
!ap

55
], a

52
"m2ap

52
!n2ap

43
#mn[ap

42
!ap

53
],

a
55
"m2ap

55
#n2ap

44
#2mnap

54
, b

1
"bp

1
, b

4
"n2bp

5
#m2bp

4
#2mnbp

6
,

b
5
"m2bp

5
#n2bp

4
!2mnbp

6
, b

6
"mn[bp

5
!bp

4
], b

13
"mn[bp

14
!bp

15
],

b
14
"m2bp

14
#n2bp

15
!2mnbp

13
, b

15
"m2bp

15
#n2bp

14
!2mnbp

13
.

In these expressions m(z)"cosb, n(z)"sinb, while the quantities a!ected by the
superscript p are associated with the beam cross-section referred to the principal axes
(xp, yp).

The expressions of sti!ness and mass terms referred to the principal axes are supplied
next:

ap
22
"Q (K

11
x2#K

44
(dy/ds)2) ds Pchordwise bending (lag) sti!ness [F!¸2],

ap
25
"Qx (dy/ds)K

12
#K

24
(dy/ds)2) ds Pchordwise bending (lag)*#apwise

transverse shear coupling sti!ness [F!¸],

ap
33
"Q (K

11
y2#K

44
(dx/ds)2) ds P#exural (#ap) sti!ness [F!¸2],

ap
34
"Q y(dx/ds)K

12
#K

24
(dx/ds)2) ds P#exural (#ap)*chordwise

transverse shear coupling sti!ness [F!¸],

ap
44
"Q (K

22
(dx/ds)2#A

44
(dy/ds)2) ds Pchordwise transverse shear sti!ness [F],

ap
55
"Q (K

22
(dy/ds)2#A

44
(dx/ds)2) ds P#apwise transverse shear sti!ness [F],
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ap
24
"Q [x (dx/ds)K

12
#(dx/ds)(dy/ds)K

24
] dsPchordwise bending

chordwise transverse shear,

[F!¸]

ap
35
"Q [y (dx/ds)K

12
#(dx/ds)(dy/ds)K

24
] dsP#apwise bending

#apwise transverse shear,

[F!¸]

(bp
1
, bp

4
, bp

5
, bp

6
)"Q m

0
(1, y2, x2, xy) ds,

(bp
13

, bp
14

, bp
15

)"Q m
2 A

dx

ds

dy

ds
, A

dx

dsB
2

A
dy

dsB
2

Bds,

where (m
0
, m

2
)"+N

k/1
:

h
(k)

o
(k)

(1, n)2 dn and { ( )) ds denotes the integral around the
circumference of the mid-line cross-section of the beam. K

ij
intervening in the expressions of

ap
ij

are local sti!ness quantities de"ned in reference [22].
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